Synergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture.

نویسندگان

  • Y K Zhu
  • X D Liu
  • C M Sköld
  • T Umino
  • H J Wang
  • J R Spurzem
  • T Kohyama
  • R F Ertl
  • S I Rennard
چکیده

Proteolytic degradation of extracellular matrix is thought to play an important role in many lung disorders. In the current study, human lung fibroblasts were cast into type I collagen gels and floated in medium containing elastase, cytomix (combination of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma), or both. After 5 days, gel collagen content was determined by measuring hydroxyproline. Elastase alone did not result in collagen degradation, but in the presence of fibroblasts, elastase reduced hydroxyproline content to 75.2% (P < 0.01), whereas cytomix alone resulted in reduction of hydroxyproline content to 93% (P < 0.05). The combination of elastase and cytomix reduced hydroxyproline content to 5.2% (P < 0.01). alpha(1)-Proteinase inhibitor blocked this synergy. Gelatin zymography and Western blot revealed that matrix metalloproteinase (MMP)-1, -3, and -9 were induced by cytomix and activated in the presence of elastase. Tissue inhibitor of metalloproteinase (TIMP)-1 and -2 were also induced by cytomix but were cleaved by elastase. We conclude that a synergistic interaction between cytomix and elastase, mediated through cytokine induction of MMP production and elastase-induced activation of latent MMPs and degradation of TIMPs, can result in a dramatic augmentation of collagen degradation. These findings support the notion that interaction among inflammatory mediators secreted by mononuclear cells and neutrophils can induce tissue cells to degrade extracellular matrix. Such a mechanism may contribute to the protease-anti-protease imbalance in emphysema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture

BACKGROUND Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. METHODS Blood monocytes from healthy donors and human fetal lung fibroblasts were...

متن کامل

Collaborative interactions between neutrophil elastase and metalloproteinases in extracellular matrix degradation in three-dimensional collagen gels

BACKGROUND Extended culture of monocytes and fibroblasts in three-dimensional collagen gels leads to degradation of the gels (see linked study in this issue, "Fibroblasts and monocytes contract and degrade three-dimensional collagen gels in extended co-culture"). The current study, therefore, was designed to evaluate production of matrix-degrading metalloproteinases by these cells in co-culture...

متن کامل

Solar Ultraviolet Irradiation Induces Decorin Degradation in Human Skin Likely via Neutrophil Elastase

Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predo...

متن کامل

Statins inhibit matrix metalloproteinase release from human lung fibroblasts.

Pleiotropic effects of statins have been reported to include inhibition of matrix metalloproteinase (MMP) release from macrophages and endothelial cells. We evaluated whether statins would inhibit MMP release from human lung fibroblasts, which play a major role in remodelling processes. Monolayer and three-dimensional (3D) collagen gel cultures of fibroblasts were used. Cytokines (tumour necros...

متن کامل

Retinoic acid attenuates cytokine-driven fibroblast degradation of extracellular matrix in three-dimensional culture.

Proteolytic degradation of extracellular matrix is thought to play an important role both in emphysema and in tissue development and repair. Retinoic acid has been suggested to modify tissue injury, and in an animal model of emphysema may induce alveolar repair. Since cytokines can induce matrix metalloproteinase (MMP) production in fibroblasts and neutrophil elastase (NE) can activate MMPs, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 281 4  شماره 

صفحات  -

تاریخ انتشار 2001